skip_navigation
SS 2021
LehrveranstaltungTypSWSECTS-CreditsLV-Nummer
Master Thesis - Seminar SE 2,0 2,0 M2.00000.40.071
LehrveranstaltungTypSWSECTS-CreditsLV-Nummer
Projekt 1 PT 3,0 5,0 B2.05270.40.170
Seminar Berufspraktikum SE 2,0 2,0 B2.00000.60.470
WS 2020
LehrveranstaltungTypSWSECTS-CreditsLV-Nummer
Transiente Messsysteme ILV 2,5 3,0 MBLB-1.06
LehrveranstaltungTypSWSECTS-CreditsLV-Nummer
Signal Analysis Lab Gruppe A ILV 2,5 3,0 M2.05280.11.941
Signal Analysis Lab Gruppe B ILV 2,5 3,0 M2.05280.11.941
Vertiefung: Embedded SystemsTypSWSECTS-Credits
PCB Simulation ILV 2,0 2,0 M2.05282.31.551
RF Measurements ILV 1,0 2,0 M2.05282.31.561
LehrveranstaltungTypSWSECTS-CreditsLV-Nummer
Mess- und Sensortechnik ILV 4,0 5,0 B2.05270.30.930
Projekt 2 PT 5,0 9,0 B2.05270.50.190
Systems Engineering Grundlagen ILV 5,0 6,0 B2.05270.10.090
LehrveranstaltungTypSWSECTS-CreditsLV-Nummer
Mess- und Sensortechnik ILV 4,0 5,0 B2.05270.30.930
Mess- und Sensortechnik ILV 4,0 5,0 B2.05270.30.930
Projekt 2 PT 5,0 9,0 B2.05270.50.190
Systems Engineering Grundlagen ILV 5,0 6,0 B2.05270.10.090
Systems Engineering Grundlagen ILV 5,0 6,0 B2.05270.10.090
TitelAutorJahr
TitelAutorJahr
Ausarbeiten einer Fehleranalyseboardlösung für einen Batteriemanagementsystem - Chip
  • Ahmad YOUNES
  • 2020
    Realisieren und Evaluieren eines Fehleranalyseboards für einen Batterie Management Chip
  • Ahmad YOUNES
  • 2020
    TitelAutorJahr
    Ausarbeiten einer Fehleranalyseboardlösung für einen Batteriemanagementsystem - Chip
  • Ahmad YOUNES
  • 2020
    Realisieren und Evaluieren eines Fehleranalyseboards für einen Batterie Management Chip
  • Ahmad YOUNES
  • 2020
    LaufzeitMai/2021 - Dezember/2022
    Projektleitung
  • Dongning Zhao
  • Projektmitarbeiter*innen
  • Wolfgang Scherr
  • Manfred Ley
  • Mehdi MORADIAN BOVANLOO
  • Bernd Filipitsch
  • ForschungsschwerpunktSensorik
    Studiengang
  • Integrated Systems and Circuits Design
  • ForschungsprogrammForschung, Entwicklung und Innovation, EFRE
    Förderinstitution/Auftraggeber
  • KWF - Kärntner Wirtschaftsförderungsfonds
  • Current robot systems are limited in their abilities of safe physical interaction with humans and objects in the real world. Tasks performed by robots are slow, rather simple, and not optimal as it is often necessary to isolate robots (e.g. behind fences) to avoid collisions. This makes these robots not suitable for user needs where they are expected to add value in several application areas. There is a critical socio-economic need to endow robots with the abilities of safe and effective interaction with humans and objects in their environment. One of the reasons for today's robots' limitations is the missing ability to comprehensively perceive the environment in real-time, understand situations, predict potential actions and reason about action consequences and risks. Such abilities are fundamental for interaction with humans and the world and for task specific adaptation of actions based on such interaction and experience. In order to address these topics, sensors for the perception of the environment which are co-designed with specific integrated circuits are core elements. Consequently, the scientific and technological objective of PATTERN-Skin is to develop a novel embodied bendable and potentially stretchable multimodal modular robot skin that provides robots with unprecedented sensing abilities facilitating contact-based/tactile and contact-less multimodal exploration of the world towards safe human-robot interaction. Besides the physical realization of the skin modules, also physically accurate real time simulations (“digital twin”) will be developed that allow to optimize and tailor skin configurations for robots and applications. Based on this sensor skin and the corresponding digital twin, PATTERN-Skin will investigate model based and AI-based methods to obtain representations of the environment towards the utilization in safe control strategies and aiming to meet requirements as defined e.g. in the ISO 15066 and 10218 safety standards. With respect to safe, reliable, and secure assembly of full systems from a number of individual sensor skin modules, a unified design pattern utilizing Near Field Communication (NFC) and hardware security elements will be investigated for both wired and wireless connectivity. By equipping robots with this enhanced sensing and interaction abilities, PATTERN-Skin is expected to impact a wide range of robotics applications ranging from personal care and assistance to agile logistics and manufacturing. The developed technologies and methods will be open, modular, and non-proprietary.

     

    Dieses Projekt wird aus Mitteln des Europäischen Fonds für regionale Entwicklung kofinanziert.

     

    REACT-EU ALS TEIL DER REAKTION DER UNION AUF DIE COVID-19-PANDEMIE FINANZIERT.

     

    Nähere Informationen zu IWB/EFRE finden Sie auf www.efre.gv.at

    LaufzeitApril/2014 - September/2019
    Projektleitung
  • Johannes Sturm
  • Projektmitarbeiter*innen
  • Erwin Ofner
  • Graciele Batistell
  • Suchendranath Popuri
  • Marcus Groinig
  • Michael Köberle
  • Hermann Sterner
  • Angelika Voutsinas
  • Albert Suriol Aguadero
  • Aruna Medarametla
  • Raisa Saman Hashmi
  • Timo Holzmann
  • Vijaya Sankara Rao Pasupureddi
  • Ornel KOCI
  • Bernd Filipitsch
  • Mario Wehr
  • Ingmar Bihlo
  • Ajinkya Kale
  • Darshan Bhaskar Shetty
  • Pratap Tumkur Renukaswany
  • Pratap Renukaswamy
  • Ramona Georgiana Oros
  • Vedran SESIC
  • Jagadish VAIBHAV
  • Ivan SEJC
  • Abdelhamed ELDEEB
  • Hasan El-GIBALY
  • Sahar Sarafi
  • Darshak Bhatt
  • Manfred Ley
  • Sina Mortezazadeh Mahani
  • Mudasir Bashir
  • Vedran Ibrahimovic
  • Ivan SEJC
  • ForschungsschwerpunktMikroelektronik
    Studiengang
  • Systems Engineering
  • ForschungsprogrammBM.WFJ: Josef-Ressel-Zentrum
    Förderinstitution/Auftraggeber
  • Christian Doppler Forschungsgesellschaft
  • The research activities of the proposed Ressel Center at FH-Kärnten will focus on modeling and implementation of integrated radio-frequency (RF) systems and circuits based on standard integrated circuit CMOS technologies. The tasks include all necessary development steps from modeling, simulation, circuit implementation to lab characterization supporting future integrated wireless communication systems.

    LaufzeitNovember/2013 - Dezember/2015
    Projektleitung
  • Hermann Sterner
  • Projektmitarbeiter*innen
  • Matthias Haselberger
  • Ingmar Bihlo
  • Bernd Filipitsch
  • ForschungsschwerpunktMikrowellentechnik
    Studiengang
  • Systems Engineering
  • ForschungsprogrammMobilität der Zukunft, 1. Ausschreibung 2012
    Förderinstitution/Auftraggeber
  • FFG
  • Prosoft Süd Consulting GmbH
  • RIMS entwickelt ein auf Mikrowellen-Radar basierendes Monitoringsystem, mit dem ein Infrastrukturbereich auf das Betreten durch Personen und das eventuelle Vorhandensein betriebsbehindernder Elemente überwacht werden kann. Neben der Entwicklung leistungsfähiger Radarsensorik soll das System auch entsprechend energieautark sein, leicht installiert werden können, betriebssicher und einfach skalierbar sein. Zur Auswertung der Sensorsignal werden entsprechende Algorithmen entwickelt. Die Einheiten können für die Überwachung der Betriebssicherheit eines Infrastrukturbereiches (Bahn wie Straße) herangezogen werden.

    • Prosoft Süd Consulting GmbH (Lead Partner)
    • FFG (Fördergeber/Auftraggeber)
    • MC Mobility Consultants GmbH
    • Rail Data Services, GmbH & Co KG
    • Technische Universität Wien
    LaufzeitMai/2021 - Dezember/2022
    Projektleitung
  • Dongning Zhao
  • Projektmitarbeiter*innen
  • Wolfgang Scherr
  • Manfred Ley
  • Mehdi MORADIAN BOVANLOO
  • Bernd Filipitsch
  • ForschungsschwerpunktSensorik
    Studiengang
  • Integrated Systems and Circuits Design
  • ForschungsprogrammForschung, Entwicklung und Innovation, EFRE
    Förderinstitution/Auftraggeber
  • KWF - Kärntner Wirtschaftsförderungsfonds
  • Current robot systems are limited in their abilities of safe physical interaction with humans and objects in the real world. Tasks performed by robots are slow, rather simple, and not optimal as it is often necessary to isolate robots (e.g. behind fences) to avoid collisions. This makes these robots not suitable for user needs where they are expected to add value in several application areas. There is a critical socio-economic need to endow robots with the abilities of safe and effective interaction with humans and objects in their environment. One of the reasons for today's robots' limitations is the missing ability to comprehensively perceive the environment in real-time, understand situations, predict potential actions and reason about action consequences and risks. Such abilities are fundamental for interaction with humans and the world and for task specific adaptation of actions based on such interaction and experience. In order to address these topics, sensors for the perception of the environment which are co-designed with specific integrated circuits are core elements. Consequently, the scientific and technological objective of PATTERN-Skin is to develop a novel embodied bendable and potentially stretchable multimodal modular robot skin that provides robots with unprecedented sensing abilities facilitating contact-based/tactile and contact-less multimodal exploration of the world towards safe human-robot interaction. Besides the physical realization of the skin modules, also physically accurate real time simulations (“digital twin”) will be developed that allow to optimize and tailor skin configurations for robots and applications. Based on this sensor skin and the corresponding digital twin, PATTERN-Skin will investigate model based and AI-based methods to obtain representations of the environment towards the utilization in safe control strategies and aiming to meet requirements as defined e.g. in the ISO 15066 and 10218 safety standards. With respect to safe, reliable, and secure assembly of full systems from a number of individual sensor skin modules, a unified design pattern utilizing Near Field Communication (NFC) and hardware security elements will be investigated for both wired and wireless connectivity. By equipping robots with this enhanced sensing and interaction abilities, PATTERN-Skin is expected to impact a wide range of robotics applications ranging from personal care and assistance to agile logistics and manufacturing. The developed technologies and methods will be open, modular, and non-proprietary.

     

    Dieses Projekt wird aus Mitteln des Europäischen Fonds für regionale Entwicklung kofinanziert.

     

    REACT-EU ALS TEIL DER REAKTION DER UNION AUF DIE COVID-19-PANDEMIE FINANZIERT.

     

    Nähere Informationen zu IWB/EFRE finden Sie auf www.efre.gv.at

    LaufzeitMai/2021 - Dezember/2022
    Projektleitung
  • Dongning Zhao
  • Projektmitarbeiter*innen
  • Wolfgang Scherr
  • Manfred Ley
  • Mehdi MORADIAN BOVANLOO
  • Bernd Filipitsch
  • ForschungsschwerpunktSensorik
    Studiengang
  • Integrated Systems and Circuits Design
  • ForschungsprogrammForschung, Entwicklung und Innovation, EFRE
    Förderinstitution/Auftraggeber
  • KWF - Kärntner Wirtschaftsförderungsfonds
  • Current robot systems are limited in their abilities of safe physical interaction with humans and objects in the real world. Tasks performed by robots are slow, rather simple, and not optimal as it is often necessary to isolate robots (e.g. behind fences) to avoid collisions. This makes these robots not suitable for user needs where they are expected to add value in several application areas. There is a critical socio-economic need to endow robots with the abilities of safe and effective interaction with humans and objects in their environment. One of the reasons for today's robots' limitations is the missing ability to comprehensively perceive the environment in real-time, understand situations, predict potential actions and reason about action consequences and risks. Such abilities are fundamental for interaction with humans and the world and for task specific adaptation of actions based on such interaction and experience. In order to address these topics, sensors for the perception of the environment which are co-designed with specific integrated circuits are core elements. Consequently, the scientific and technological objective of PATTERN-Skin is to develop a novel embodied bendable and potentially stretchable multimodal modular robot skin that provides robots with unprecedented sensing abilities facilitating contact-based/tactile and contact-less multimodal exploration of the world towards safe human-robot interaction. Besides the physical realization of the skin modules, also physically accurate real time simulations (“digital twin”) will be developed that allow to optimize and tailor skin configurations for robots and applications. Based on this sensor skin and the corresponding digital twin, PATTERN-Skin will investigate model based and AI-based methods to obtain representations of the environment towards the utilization in safe control strategies and aiming to meet requirements as defined e.g. in the ISO 15066 and 10218 safety standards. With respect to safe, reliable, and secure assembly of full systems from a number of individual sensor skin modules, a unified design pattern utilizing Near Field Communication (NFC) and hardware security elements will be investigated for both wired and wireless connectivity. By equipping robots with this enhanced sensing and interaction abilities, PATTERN-Skin is expected to impact a wide range of robotics applications ranging from personal care and assistance to agile logistics and manufacturing. The developed technologies and methods will be open, modular, and non-proprietary.

     

    Dieses Projekt wird aus Mitteln des Europäischen Fonds für regionale Entwicklung kofinanziert.

     

    REACT-EU ALS TEIL DER REAKTION DER UNION AUF DIE COVID-19-PANDEMIE FINANZIERT.

     

    Nähere Informationen zu IWB/EFRE finden Sie auf www.efre.gv.at

    LaufzeitApril/2014 - September/2019
    Projektleitung
  • Johannes Sturm
  • Projektmitarbeiter*innen
  • Erwin Ofner
  • Graciele Batistell
  • Suchendranath Popuri
  • Marcus Groinig
  • Michael Köberle
  • Hermann Sterner
  • Angelika Voutsinas
  • Albert Suriol Aguadero
  • Aruna Medarametla
  • Raisa Saman Hashmi
  • Timo Holzmann
  • Vijaya Sankara Rao Pasupureddi
  • Ornel KOCI
  • Bernd Filipitsch
  • Mario Wehr
  • Ingmar Bihlo
  • Ajinkya Kale
  • Darshan Bhaskar Shetty
  • Pratap Tumkur Renukaswany
  • Pratap Renukaswamy
  • Ramona Georgiana Oros
  • Vedran SESIC
  • Jagadish VAIBHAV
  • Ivan SEJC
  • Abdelhamed ELDEEB
  • Hasan El-GIBALY
  • Sahar Sarafi
  • Darshak Bhatt
  • Manfred Ley
  • Sina Mortezazadeh Mahani
  • Mudasir Bashir
  • Vedran Ibrahimovic
  • Ivan SEJC
  • ForschungsschwerpunktMikroelektronik
    Studiengang
  • Systems Engineering
  • ForschungsprogrammBM.WFJ: Josef-Ressel-Zentrum
    Förderinstitution/Auftraggeber
  • Christian Doppler Forschungsgesellschaft
  • The research activities of the proposed Ressel Center at FH-Kärnten will focus on modeling and implementation of integrated radio-frequency (RF) systems and circuits based on standard integrated circuit CMOS technologies. The tasks include all necessary development steps from modeling, simulation, circuit implementation to lab characterization supporting future integrated wireless communication systems.

    LaufzeitApril/2014 - September/2019
    Projektleitung
  • Johannes Sturm
  • Projektmitarbeiter*innen
  • Erwin Ofner
  • Graciele Batistell
  • Suchendranath Popuri
  • Marcus Groinig
  • Michael Köberle
  • Hermann Sterner
  • Angelika Voutsinas
  • Albert Suriol Aguadero
  • Aruna Medarametla
  • Raisa Saman Hashmi
  • Timo Holzmann
  • Vijaya Sankara Rao Pasupureddi
  • Ornel KOCI
  • Bernd Filipitsch
  • Mario Wehr
  • Ingmar Bihlo
  • Ajinkya Kale
  • Darshan Bhaskar Shetty
  • Pratap Tumkur Renukaswany
  • Pratap Renukaswamy
  • Ramona Georgiana Oros
  • Vedran SESIC
  • Jagadish VAIBHAV
  • Ivan SEJC
  • Abdelhamed ELDEEB
  • Hasan El-GIBALY
  • Sahar Sarafi
  • Darshak Bhatt
  • Manfred Ley
  • Sina Mortezazadeh Mahani
  • Mudasir Bashir
  • Vedran Ibrahimovic
  • Ivan SEJC
  • ForschungsschwerpunktMikroelektronik
    Studiengang
  • Systems Engineering
  • ForschungsprogrammBM.WFJ: Josef-Ressel-Zentrum
    Förderinstitution/Auftraggeber
  • Christian Doppler Forschungsgesellschaft
  • The research activities of the proposed Ressel Center at FH-Kärnten will focus on modeling and implementation of integrated radio-frequency (RF) systems and circuits based on standard integrated circuit CMOS technologies. The tasks include all necessary development steps from modeling, simulation, circuit implementation to lab characterization supporting future integrated wireless communication systems.

    LaufzeitApril/2014 - September/2019
    Projektleitung
  • Johannes Sturm
  • Projektmitarbeiter*innen
  • Erwin Ofner
  • Graciele Batistell
  • Suchendranath Popuri
  • Marcus Groinig
  • Michael Köberle
  • Hermann Sterner
  • Angelika Voutsinas
  • Albert Suriol Aguadero
  • Aruna Medarametla
  • Raisa Saman Hashmi
  • Timo Holzmann
  • Vijaya Sankara Rao Pasupureddi
  • Ornel KOCI
  • Bernd Filipitsch
  • Mario Wehr
  • Ingmar Bihlo
  • Ajinkya Kale
  • Darshan Bhaskar Shetty
  • Pratap Tumkur Renukaswany
  • Pratap Renukaswamy
  • Ramona Georgiana Oros
  • Vedran SESIC
  • Jagadish VAIBHAV
  • Ivan SEJC
  • Abdelhamed ELDEEB
  • Hasan El-GIBALY
  • Sahar Sarafi
  • Darshak Bhatt
  • Manfred Ley
  • Sina Mortezazadeh Mahani
  • Mudasir Bashir
  • Vedran Ibrahimovic
  • Ivan SEJC
  • ForschungsschwerpunktMikroelektronik
    Studiengang
  • Systems Engineering
  • ForschungsprogrammBM.WFJ: Josef-Ressel-Zentrum
    Förderinstitution/Auftraggeber
  • Christian Doppler Forschungsgesellschaft
  • The research activities of the proposed Ressel Center at FH-Kärnten will focus on modeling and implementation of integrated radio-frequency (RF) systems and circuits based on standard integrated circuit CMOS technologies. The tasks include all necessary development steps from modeling, simulation, circuit implementation to lab characterization supporting future integrated wireless communication systems.

    LaufzeitApril/2014 - September/2019
    Projektleitung
  • Johannes Sturm
  • Projektmitarbeiter*innen
  • Erwin Ofner
  • Graciele Batistell
  • Suchendranath Popuri
  • Marcus Groinig
  • Michael Köberle
  • Hermann Sterner
  • Angelika Voutsinas
  • Albert Suriol Aguadero
  • Aruna Medarametla
  • Raisa Saman Hashmi
  • Timo Holzmann
  • Vijaya Sankara Rao Pasupureddi
  • Ornel KOCI
  • Bernd Filipitsch
  • Mario Wehr
  • Ingmar Bihlo
  • Ajinkya Kale
  • Darshan Bhaskar Shetty
  • Pratap Tumkur Renukaswany
  • Pratap Renukaswamy
  • Ramona Georgiana Oros
  • Vedran SESIC
  • Jagadish VAIBHAV
  • Ivan SEJC
  • Abdelhamed ELDEEB
  • Hasan El-GIBALY
  • Sahar Sarafi
  • Darshak Bhatt
  • Manfred Ley
  • Sina Mortezazadeh Mahani
  • Mudasir Bashir
  • Vedran Ibrahimovic
  • Ivan SEJC
  • ForschungsschwerpunktMikroelektronik
    Studiengang
  • Systems Engineering
  • ForschungsprogrammBM.WFJ: Josef-Ressel-Zentrum
    Förderinstitution/Auftraggeber
  • Christian Doppler Forschungsgesellschaft
  • The research activities of the proposed Ressel Center at FH-Kärnten will focus on modeling and implementation of integrated radio-frequency (RF) systems and circuits based on standard integrated circuit CMOS technologies. The tasks include all necessary development steps from modeling, simulation, circuit implementation to lab characterization supporting future integrated wireless communication systems.

    LaufzeitNovember/2013 - Dezember/2015
    Projektleitung
  • Hermann Sterner
  • Projektmitarbeiter*innen
  • Matthias Haselberger
  • Ingmar Bihlo
  • Bernd Filipitsch
  • ForschungsschwerpunktMikrowellentechnik
    Studiengang
  • Systems Engineering
  • ForschungsprogrammMobilität der Zukunft, 1. Ausschreibung 2012
    Förderinstitution/Auftraggeber
  • FFG
  • Prosoft Süd Consulting GmbH
  • RIMS entwickelt ein auf Mikrowellen-Radar basierendes Monitoringsystem, mit dem ein Infrastrukturbereich auf das Betreten durch Personen und das eventuelle Vorhandensein betriebsbehindernder Elemente überwacht werden kann. Neben der Entwicklung leistungsfähiger Radarsensorik soll das System auch entsprechend energieautark sein, leicht installiert werden können, betriebssicher und einfach skalierbar sein. Zur Auswertung der Sensorsignal werden entsprechende Algorithmen entwickelt. Die Einheiten können für die Überwachung der Betriebssicherheit eines Infrastrukturbereiches (Bahn wie Straße) herangezogen werden.

    • Prosoft Süd Consulting GmbH (Lead Partner)
    • FFG (Fördergeber/Auftraggeber)
    • MC Mobility Consultants GmbH
    • Rail Data Services, GmbH & Co KG
    • Technische Universität Wien

    Verwenden Sie für externe Referenzen auf das Profil von Bernd Filipitsch folgenden Link: www.fh-kaernten.at/mitarbeiter-details?person=b.filipitsch