skip_navigation
WS 2025
LectureTypeSPPSECTS-CreditsCourse number
Advanced Topics ILV 3,5 5,0 M2.08760.11.151
Artificial Neural Networks and Deep Learning (II) ILV 3,5 5,0 M2.08760.11.141
Information& Probability Theory ILV 3,5 5,0 M2.08760.11.011
Project (III) Practical Implementation PA 3,5 5,0 M2.08760.11.101
LectureTypeSPPSECTS-CreditsCourse number
Information& Probability Theory ILV 3,5 5,0 M2.08760.11.011
SS 2025
LectureTypeSPPSECTS-CreditsCourse number
Artificial Neural Networks and Deep Learning (I) ILV 3,5 5,0 M2.08760.11.131
Master Thesis MT 0,5 20,0 M2.08760.11.211
Project (II) Frameworks and Concept Study ILV 3,5 5,0 M2.08760.11.091
TitelAutorJahr
Automated Detection and Counting of Dislocations in Scanning Electron Microscopy Images Using Classical and Machine Learning-Based Image Segmentation Eva Sarah Schwarzl 2025
Machine learning approaches for anomaly detection in the energy market. Priscilla Zannier 2025
TitelAutorJahr
Automated Detection and Counting of Dislocations in Scanning Electron Microscopy Images Using Classical and Machine Learning-Based Image Segmentation Eva Sarah Schwarzl 2025
Machine learning approaches for anomaly detection in the energy market. Priscilla Zannier 2025
TitelAutorJahr
Run-TimeSeptember/2025 - December/2025
Project management
  • Markus Prossegger
  • Project staff
  • Stefan Schrunner
  • ForschungsschwerpunktGesundheitswissenschaften
    Studiengang
  • Engineering und IT - Allgemein
  • ForschungsprogrammWirtschaftliche Forschung
    Förderinstitution/Auftraggeber
  • MOVEVO Technologies GmbH
  • Ziel ist es, MOVEVO in der Entwicklung eines datenbasierten und KI-gestützten Systems zur Individualisierung von Gesundheitsförderung zu unterstützen. Im Zentrum steht dabei die Konzeption und prototypische Vorbereitung einer skalierbaren „Adaptive Health Engine“, welche Nutzer:innenprofile erkennt, personalisierte Inhalte dynamisch ausspielt und langfristig das Gesundheitsverhalten positiv beeinflusst.

    • MOVEVO Technologies GmbH (Fördergeber/Auftraggeber)
    Run-TimeSeptember/2025 - December/2025
    Project management
  • Markus Prossegger
  • Project staff
  • Stefan Schrunner
  • ForschungsschwerpunktGesundheitswissenschaften
    Studiengang
  • Engineering und IT - Allgemein
  • ForschungsprogrammWirtschaftliche Forschung
    Förderinstitution/Auftraggeber
  • MOVEVO Technologies GmbH
  • Ziel ist es, MOVEVO in der Entwicklung eines datenbasierten und KI-gestützten Systems zur Individualisierung von Gesundheitsförderung zu unterstützen. Im Zentrum steht dabei die Konzeption und prototypische Vorbereitung einer skalierbaren „Adaptive Health Engine“, welche Nutzer:innenprofile erkennt, personalisierte Inhalte dynamisch ausspielt und langfristig das Gesundheitsverhalten positiv beeinflusst.

    • MOVEVO Technologies GmbH (Fördergeber/Auftraggeber)
    Articles in Journals
    TitleAuthorYear
    Learning From Limited Temporal Data: Dynamically Sparse Historical Functional Linear Models With Applications to Earth Science Environmetrics, 36(4)Janssen, J., Meng, S., Haris, A., Schrunner, S., Cao, J., Welch, W., Kunz, N., Ameli, A.2025
    A Gaussian sliding windows regression model for hydrological inference Journal of the Royal Statistical Society, Series C: Applied StatisticsSchrunner, S., Pishrobat, P., Janssen, J., Jenul, A., Cao, J., Ameli, A., Welch, W.2025
    Novel Ensemble Feature Selection Techniques Applied to High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms for the Prediction of Survival Computer Methods and Programs in Biomedicine, 244Jenul, A., Stokmo, H., Schrunner, S., Hjortland, G., Revheim, M., Tomic, O.2024
    UBayFS: An R Package for User Guided Feature Selection Journal of Open Source Software, 8Jenul, A., Schrunner, S.2023
    Principal component-based image segmentation: a new approach to outline in vitro cell colonies Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11:18-30Arous, D., Schrunner, S., Hanson, I., Edin, N., Malinen, E.2022
    A user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) Machine Learning, 111:3897-3923Jenul, A., Schrunner, S., Pilz, J., Tomic, O.2022
    RENT: A Python Package for Repeated Elastic Net Feature Selection Journal of Open Source Software, 6Jenul, A., Schrunner, S., Huynh, B., Tomic, O.2021
    RENT - repeated elastic net technique for feature selection IEEE Access, 9Jenul, A., Schrunner, S., Liland, K., Indahl, U., Futsaether, C., Tomic, O.2021
    An explicit solution for image restoration using Markov Random Fields Journal of Signal Processing Systems, 92:257-267Pleschberger, M., Schrunner, S., Pilz, J.2019
    Feature extraction from analog wafermaps: a comparison of classical image processing and a deep generative model IEEE Transactions on Semiconductor Manufacturing, 32:190-198Santos, T., Schrunner, S., Geiger, B., Pfeiler, O., Zernig, A., Kästner, A., Kern, R.2019
    Conference contributions
    TitleAuthorYear
    Component Based Pre-filtering of Noisy Data for Improved Tsetlin Machine Modelling in: IEEE (Hrsg.), International Symposium on the Tsetlin Machine (ISTM), 20-21 Jun 2022, Grimstad, NorwayJenul, A., Bhattarai, B., Liland, K., Jiao, L., Schrunner, S., Futsaether, C., Granmo, O., Tomic, O.2022
    Ranking Feature-Block Importance in Artificial Multiblock Neural Networks in: Springer Lecture Notes in Computer Science (Hrsg.), International Conference on Artificial Neural Networks 2022, 06-09 Sep 2022, Bristol, UK, S. 163-175Jenul, A., Schrunner, S., Huynh, B., Helin, R., Futsaether, C., Liland, K., Tomic, O.2022
    A generative semi-supervised classifier for datasets with unknown classes in: Association for Computing Machinery (Hrsg.), SAC '20: ACM Symposium on Applied Computing 2020, 30 Mar-03 Apr 2020, Brno, Czech Republic, S. 1066-1074Schrunner, S., Geiger, B., Zernig, A., Kern, R.2020
    A health factor for process patterns - enhancing semiconductor manufacturing by pattern recognition in analog wafermaps in: IEEE (Hrsg.), IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), 06-09 Oct 2019, Bari, ItalySchrunner, S., Jenul, A., Scheiber, M., Zernig, A., Kästner, A., Kern, R.2019
    A comparison of supervised approaches for process pattern recognition in analog semiconductor wafer test data in: IEEE (Hrsg.), IEEE International Conference on Machine Learning and Applications (ICMLA 2018), 17-20 Dec 2018, Orlando, FL, USASchrunner, S., Pfeiler, O., Zernig, A., Kästner, A., Kern, R.2018
    Markov random fields for pattern extraction in analog wafer test data in: IEEE (Hrsg.), International Conference on Image Processing Theory, Tools and Applications (IPTA 2017), 28 Nov-01 Dec 2017, Montreal, CanadaSchrunner, S., Pfeiler, O., Zernig, A., Kästner, A., Kern, R.2017
    Articles in Journals
    TitleAuthorYear
    Learning From Limited Temporal Data: Dynamically Sparse Historical Functional Linear Models With Applications to Earth Science Environmetrics, 36(4)Janssen, J., Meng, S., Haris, A., Schrunner, S., Cao, J., Welch, W., Kunz, N., Ameli, A.2025
    A Gaussian sliding windows regression model for hydrological inference Journal of the Royal Statistical Society, Series C: Applied StatisticsSchrunner, S., Pishrobat, P., Janssen, J., Jenul, A., Cao, J., Ameli, A., Welch, W.2025
    Articles in Journals
    TitleAuthorYear
    Novel Ensemble Feature Selection Techniques Applied to High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms for the Prediction of Survival Computer Methods and Programs in Biomedicine, 244Jenul, A., Stokmo, H., Schrunner, S., Hjortland, G., Revheim, M., Tomic, O.2024
    Articles in Journals
    TitleAuthorYear
    UBayFS: An R Package for User Guided Feature Selection Journal of Open Source Software, 8Jenul, A., Schrunner, S.2023
    Articles in Journals
    TitleAuthorYear
    Principal component-based image segmentation: a new approach to outline in vitro cell colonies Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11:18-30Arous, D., Schrunner, S., Hanson, I., Edin, N., Malinen, E.2022
    A user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) Machine Learning, 111:3897-3923Jenul, A., Schrunner, S., Pilz, J., Tomic, O.2022
    Conference contributions
    TitleAuthorYear
    Component Based Pre-filtering of Noisy Data for Improved Tsetlin Machine Modelling in: IEEE (Hrsg.), International Symposium on the Tsetlin Machine (ISTM), 20-21 Jun 2022, Grimstad, NorwayJenul, A., Bhattarai, B., Liland, K., Jiao, L., Schrunner, S., Futsaether, C., Granmo, O., Tomic, O.2022
    Ranking Feature-Block Importance in Artificial Multiblock Neural Networks in: Springer Lecture Notes in Computer Science (Hrsg.), International Conference on Artificial Neural Networks 2022, 06-09 Sep 2022, Bristol, UK, S. 163-175Jenul, A., Schrunner, S., Huynh, B., Helin, R., Futsaether, C., Liland, K., Tomic, O.2022
    Articles in Journals
    TitleAuthorYear
    RENT: A Python Package for Repeated Elastic Net Feature Selection Journal of Open Source Software, 6Jenul, A., Schrunner, S., Huynh, B., Tomic, O.2021
    RENT - repeated elastic net technique for feature selection IEEE Access, 9Jenul, A., Schrunner, S., Liland, K., Indahl, U., Futsaether, C., Tomic, O.2021
    Articles in Journals
    TitleAuthorYear
    An explicit solution for image restoration using Markov Random Fields Journal of Signal Processing Systems, 92:257-267Pleschberger, M., Schrunner, S., Pilz, J.2019
    Feature extraction from analog wafermaps: a comparison of classical image processing and a deep generative model IEEE Transactions on Semiconductor Manufacturing, 32:190-198Santos, T., Schrunner, S., Geiger, B., Pfeiler, O., Zernig, A., Kästner, A., Kern, R.2019
    Conference contributions
    TitleAuthorYear
    A generative semi-supervised classifier for datasets with unknown classes in: Association for Computing Machinery (Hrsg.), SAC '20: ACM Symposium on Applied Computing 2020, 30 Mar-03 Apr 2020, Brno, Czech Republic, S. 1066-1074Schrunner, S., Geiger, B., Zernig, A., Kern, R.2020
    A health factor for process patterns - enhancing semiconductor manufacturing by pattern recognition in analog wafermaps in: IEEE (Hrsg.), IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), 06-09 Oct 2019, Bari, ItalySchrunner, S., Jenul, A., Scheiber, M., Zernig, A., Kästner, A., Kern, R.2019
    A comparison of supervised approaches for process pattern recognition in analog semiconductor wafer test data in: IEEE (Hrsg.), IEEE International Conference on Machine Learning and Applications (ICMLA 2018), 17-20 Dec 2018, Orlando, FL, USASchrunner, S., Pfeiler, O., Zernig, A., Kästner, A., Kern, R.2018
    Markov random fields for pattern extraction in analog wafer test data in: IEEE (Hrsg.), International Conference on Image Processing Theory, Tools and Applications (IPTA 2017), 28 Nov-01 Dec 2017, Montreal, CanadaSchrunner, S., Pfeiler, O., Zernig, A., Kästner, A., Kern, R.2017

    Please use this link for external references on the profile of Stefan Schrunner: www.fh-kaernten.at/mitarbeiter-details?person=s.schrunner