Back

PATTERN-SKIN - Modular Multi-Modal Proximity and Tactile Perception Skin

Run-TimeMay/2021 - March/2023
Project management
  • Dongning Zhao
  • Vinayak HANDE
  • Project staff
  • Wolfgang Scherr
  • Manfred Ley
  • Mehdi MORADIAN BOVANLOO
  • Bernd Filipitsch
  • Corinna Maria Kudler
  • Ingmar Bihlo
  • Osheen Reffat Fahmy Y. Mikhail OSHEEN REFFAT FAHMY Y. MIKHAIL
  • Osheen Reffat Fahmy Y. Mikhail OSHEEN REFFAT FAHMY Y. MIKHAIL
  • Irene Terpetschnig
  • ForschungsschwerpunktSensorik
    Studiengang
  • Integrated Systems and Circuits Design
  • ForschungsprogrammRegionale Impulsförderung/EFRE-REACT
    Förderinstitution/Auftraggeber
  • KWF - Kärntner Wirtschaftsförderungsfonds
  • The scientific and technological objective of PATTERN-Skin was to develop a novel embodied bendable and potentially stretchable multimodal modular robot skin that provided robots with unprecedented sensing abilities, facilitating contact-based/tactile and contact-less multimodal exploration of the world towards safe human-robot interaction. Besides the physical realization of the skin modules, physically accurate real-time simulations („digital twin“) were developed that allowed for the optimization and tailoring of skin configurations for robots and applications. Based on this sensor skin and the corresponding digital twin, PATTERN-Skin investigated model-based and AI-based methods to obtain representations of the environment for utilization in safe control strategies and aiming to meet requirements as defined in standards such as ISO 15066 and 10218 safety standards. With respect to safe, reliable, and secure assembly of full systems from a number of individual sensor skin modules, a unified design pattern utilizing Near Field Communication (NFC) and hardware security elements was investigated for both wired and wireless connectivity. By equipping robots with these enhanced sensing and interaction abilities, PATTERN-Skin was expected to impact a wide range of robotics applications ranging from personal care and assistance to agile logistics and manufacturing. The developed technologies and methods were open, modular, and non-proprietary.

    This project is co-financed by the European Regional Development Fund. REACT-EU FUNDED AS PART OF THE UNION'S RESPONSE TO THE COVID-19 PANDEMIC. You can find more information about IWB/EFRE at www.efre.gv.at