Continuum Mechanics 1 (ILV)

Back
Course numberMBLB-1.03
Course codeKontMech1
Curriculum2020
Semester of degree program Semester 1
Mode of delivery Presencecourse
SPPW2,0
ECTS credits2,5
Language of instruction German

Introduction to modern continuum mechanics as the basis for FEM simulations particularly in the areas manufacturing technique and crash. Understanding of the mathematical foundations of continuum mechanics.

- Vector spaces, linear maps, basic systems
- Tensors definition, tensors 2 Stage-component representation
- Eigenvalues and invariants
- Euclidean point space, differentiability in Euclidean point space
- Covariant derivative
- Integral theorems
- Tensorial treatment of stress and strain
- Tensor treatment of constitutive equations
- Elasticity and plasticity
- Isotropy and anisotropy

J. Altenbach, H. Altenbach: Einführung in die Kontinuumsmechanik
J. Bonet, R.D. Wood: Nonlinear continuum mechanics for finite element analysis
Wall: Technische Mechanik 2: Band 2: Elastostatik (Springer-Lehrbuch), Springer Verlag
Engineering Mechanics
Meyberg, Vachenauer, Höhere Mathematik 2, Springer, 1995
Harman, Dabney, Richert, Advanced Engineering mathematics, Thomson Publishing Company, 2nd ed. 2000
J. Bonet, R.D. Wood: Nonlinear continuum mechanics for finite element analysis
Applied Mechanics and MaterialsMathematics and Mechanics of Solids

LV - immanenter Prüfungscharakter